拉看书小说

手机浏览器扫描二维码访问

基础算力的产业挑战与突破路径(第1页)

咱们常说的“基础算力”,其实就是支撑人工智能、大数据这些技术跑起来的“底层动力”,像手机、电脑里的芯片,还有数据中心里的服务器,都是它的核心硬件。但现在这个“动力系统”的发展,正卡在几个关键难题上,同时还得兼顾安全、公平这些事儿。接下来咱们就拆成三个部分,用大白话把这些问题和解决办法说清楚。

一、三大技术瓶颈:先进制程、架构创新、能耗,个个都是“硬骨头”

基础算力要想变强,核心得靠硬件升级,但现在硬件升级遇上了三个绕不开的“坎儿”——先进制程、架构创新和能耗问题。这三个问题能不能解决、解决得快不快,直接决定了未来算力能跑到多快、多稳。

先说说“先进制程”,这玩意儿其实就是芯片上晶体管的“大小”。晶体管越小,芯片上能装的数量就越多,算力也就越强。现在全球最顶尖的芯片,已经做到3纳米甚至2纳米了(1纳米大概是一根头发丝直径的五万分之一),但再想往小做,难度简直是“滚雪球”式增加。

一方面是“物理极限”拦路。当晶体管小到快接近原子级别时,就会出现“量子隧穿效应”——简单说就是电流会“不守规矩”,本来该走的电路不走,反而“穿墙”跑到别的地方去了,这样芯片就会出现漏电、性能不稳定的情况,就像家里的电线短路一样,机器根本没法正常工作。现在科学家虽然能通过新材料、新结构缓解这个问题,但成本和技术复杂度都在飙升。

另一方面是“钱和良率”的问题。想生产先进制程的芯片,得先建生产线,一条3纳米的生产线,投资就得超过200亿美元(差不多1400多亿人民币),相当于建好几座大型发电厂的钱。而且就算生产线建好了,也不是每颗芯片都能合格——这就是“良率”问题。目前3纳米芯片的良率只能维持在60%-70%,也就是说生产100颗芯片,有30-40颗是坏的、没法用的。这些坏芯片的成本,最后都得摊到好芯片上,导致算力硬件的价格居高不下,普通企业和用户想用上高算力设备,就得花更多钱。

再看“架构创新”,这里的“架构”可以理解为芯片的“工作流程设计”。现在咱们用的AI计算,大多靠GPU芯片(比如英伟达的A100、H100),它的架构是“通用型”的,就像一辆能拉货、能载人、还能跑长途的多功能车,啥活儿都能干,但干某件具体活儿的时候,效率不一定最高。

这里的矛盾就在于“通用性和效率没法两头顾”。如果把芯片架构设计成“通用型”,能适配图像识别、语音合成、数据分析等多种AI任务,不用为每个任务单独造芯片,但面对某一个特定任务(比如专门算AI模型的训练数据),它的计算效率就会变低,就像用多功能车拉超重货物,跑不快还费油。

如果反过来,把架构设计成“专用型”,专门针对某一个任务优化,效率确实能提上去,比如专门算密码的芯片、专门处理图像的芯片,速度比通用芯片快好几倍,但问题是“不灵活”——一旦任务变了,这颗芯片就没用了,比如用图像芯片去算语音数据,根本算不了。所以现在架构创新的核心难题,就是怎么在“啥都能干”和“干得快”之间找到平衡,既不用为每个任务单独造芯片,又能保证计算效率不打折。

最后是“能耗问题”,这事儿现在越来越突出,甚至成了算力产业的“紧箍咒”。随着AI、大数据的需求暴涨,数据中心的数量越来越多,规模也越来越大,而这些数据中心都是“电老虎”——目前全球数据中心的能耗,已经占了全球总能耗的3%以上,相当于好几个中等国家一年的总用电量。

其中AI服务器的能耗更是离谱,它比普通的传统服务器(比如咱们平时用的电脑主机)费电5-10倍。一台用来训练AI模型的服务器,功率能达到好几千瓦,相当于同时开几十台空调的耗电量。如果是一个大规模的算力集群(比如有几千台服务器的数据中心),一年的能耗能赶上一个小型城镇的总用电量。

高能耗带来的问题不止一个:一方面是运营成本高,数据中心光交电费就是一笔天文数字,这些成本最后还是会转嫁到用户身上;另一方面是和“双碳”目标(碳达峰、碳中和)冲突——现在全球都在减碳,而数据中心的高能耗会排放大量二氧化碳,不符合环保要求。所以如果能耗问题解决不了,就算算力能提上去,也没法持续发展,相当于给算力产业套上了“电量枷锁”。

二、安全与合规:算力发展的“底线”,不能碰也碰不得

算力要发展,光解决技术问题还不够,还得守好“安全底线”——也就是算力使用过程中的数据隐私保护和算力资源管控。这两件事要是出了问题,不仅会损害用户利益,还会影响整个产业的健康发展,相当于给算力产业埋下“定时炸弹”。

这章没有结束,请点击下一页继续阅读!

先说说“数据隐私保护”。算力的核心是“计算数据”,不管是AI训练、大数据分析,还是日常的APP使用,都需要处理大量数据,其中很多是敏感数据——比如医疗领域的患者病历(包含姓名、病情、病史等私人信息)、金融领域的交易记录(银行卡号、转账金额、消费习惯等)、还有咱们手机里的定位、聊天记录等。这些数据在通过算力设备计算、传输的时候,很容易出现泄露风险。

一方面是“传输环节被攻击”。数据在从手机、电脑传到数据中心的过程中,会经过网络,就像快递在运输途中可能被偷一样,黑客可能会通过技术手段拦截这些数据,然后卖掉或者用来做违法的事。比如之前有黑客攻击某医疗平台,偷走了几十万患者的病历,然后向平台勒索钱财,否则就把病历公开,这就是典型的数据传输泄露问题。

另一方面是“共享算力时的交叉访问”。现在很多企业和个人会用“云算力”——也就是租用云服务商(比如阿里云、腾讯云)的算力资源,这些资源是多用户共享的,就像好几个人共用一个储物柜,要是锁没关好,就可能打开别人的柜子。2023年就发生过这样的事:某云服务商的算力调度系统出了漏洞,导致一些企业存在云端的数据,被其他租用算力的用户意外访问到,虽然没有造成大规模损失,但也暴露了共享算力的隐私风险。

热门小说推荐
重生之全职太后

重生之全职太后

李娑罗这一生都没有认过输!垂帘听政的太后去世了,举国欢庆。李娑罗不甘心,她还没有完成毕生愿望。黑木棺椁的皇陵中,李娑罗重生了。重生在了五十年前的自己身上......“我叫李娑罗。”历经繁华,三国太后,原来世间还有她不曾见过的晚霞。李娑罗:快准狠,全职太后;季陵:行走在黑暗的神秘男人。...

孤养出了敌国战狼

孤养出了敌国战狼

作为权利被架空,太子之位形同虚设的裴岐,为了不坐以待毙,他费尽心思,让北越质子谢骋亲近自己,并养着他,支持他回北越夺权,帮助他成为北越的帝皇,以助自己坐上南晋的帝位。  一切都进行得很顺利,谢...

北齐怪谈

北齐怪谈

北齐怪谈小说全文番外_刘桃子路去病北齐怪谈, 《北齐怪谈》 第1章吃鱼 天保十年,七月。...

盗墓:无灾无难

盗墓:无灾无难

似乎一切都是巧合般的相遇,被遗弃的孩子遇到了他需要遇见的人。被捡回家的小可怜一步步的走向那既定却又未知的结局。他想着,如果结局是一定的话,那么他的到来就是为了阻止这样不完美的结局。为了这完美的结局,他决定以身为祭,以血肉之躯对抗已经转动的齿轮。他这只来自异世的蝴蝶,在他决定投入旋涡中心时,就已经开始煽动翅膀。......

联盟之嘎嘎乱杀

联盟之嘎嘎乱杀

简单选手,听说你和阿姨一起逛街,表现很亲密,请问你们的关系是?朋友,我们是很好的朋友。听说你们都住一起去了?谣言,纯属子虚乌有得造谣生事,我们只是好朋友。那请问简单选手,请你解释一下为什么有人看到你和rita在一起,而且她的肚子还鼓起来了?我和rita私下里是很好的朋友,单纯得朋友关系。...

玄黄破

玄黄破

架空世界+腹黑+反派+美女+权利,穿越奈何不是帝王家,左握乾坤,右搂美女;想要造反,名不当言不顺,............